sexta-feira, 1 de julho de 2016

Ensaio por Partículas Magnéticas Parte 2

Técnicas de magnetização

Mencionamos que podemos obter campos magnéticos por diversas técnicas, contudo, o processo de magnetização só é obtido através de indução de campo magnético ou por indução de corrente elétrica. Dizemos que há indução de campo quando o campo magnético gerado na peça é induzido externamente. Já no processo de magnetização por passagem de corrente, a peça em inspeção faz parte do circuito elétrico do equipamento de magnetização, isto é, a corrente de magnetização, circula pela própria peça. É por esta razão que recomendase bastante cuidado na utilização da técnica de magnetização por passagem de corrente, pois poderá ocorrer a abertura de um arco elétrico nos pontos de entrada e saída de corrente, queimando a peça nesta região,o que, em se tratando de peça acabada, pode ser inaceitável, ou mesmo poderá representar risco de explosão ou incêndio se no ambiente houver gases ou vapores inflamáveis.

Tipos de corrente elétrica utilizada

As correntes elétricas utilizadas na magnetização para inspeção por partículas magnéticas poderão ser das mais variadas fontes existentes, como segue:
• corrente contínua (CC): somente obtida através de baterias, e que na prática não é aplicável em processos industriais ;
• corrente alternada (AC): usada para detecção de descontinuidades superficiais. A corrente alternada , devido ao ciclo alternado da corrente, promove maior mobilidade às partículas, tem pouca penetração, as linhas de força são mais concentradas na superfície e portanto é mais recomendada para a detecção de descontinuidades superficiais;
• corrente alternada retificada (meia onda ou onda completa) (CA): usada para detecção de descontinuidades sub-superficiais , o que na prática representa até 4 mm de profundidade.

Magnetização por passagem de corrente pela peça

É a técnica de magnetização, em que a corrente circula pela peça, onde temos as técnicas de eletrodos e de contato direto. Técnica dos Eletrodos É a técnica de magnetização pela utilização de eletrodos, também conhecidas como pontas que quando apoiadas na superfície da peça, permitem a passagem de corrente eletríca pela peça. O campo magnético criado é circular. Esta técnica é geralmente aplicada em peças brutas fundidas, em soldas, nas indústrias de siderurgia, calderaria e outros.
A técnica dos eletrodos induz um campo magnético que é dependente da distância entre os eletrodos e a corrente elétrica que circula por eles. Em geral estes valores são tabelados e disponíveis nas normas técnicas de inspeção aplicáveis ao produto ensaiado.
Aparelho típico para magnetização por passagem de corrente elétrica denominada técnica de eletrodos. Estes equipamentos são portáteis, permitindo atingir até 1500 Ampéres utilizando corrente contínua ou alternada. Cuidados devem ser tomados quanto ao meio ambiente de operação destes equipamentos pois estes produzem faíscas elétricas que podem causar explosões na presença de gases ou produtos inflamáveis.

Técnica de contato direto

Também conhecida como magnetização por placas ou cabeçotes de contato. Devido sua aplicação maior ser através de máquinas estacionárias é definida como sendo a técnica de magnetização pela passagem de corrente elétrica de extremidade a extremidade da peça. O campo magnético formado é circular. Esta técnica se difere da técnica por eletrodos descrita ,pois é aplicável em sistemas de inspeção automáticos ou semi-automáticos, para inspecionar barras, eixos, principalmente nas indústrias automobilísticas ou em fabricas de produtor seriados de pequeno porte.

Técnica da bobina

Nessa técnica a peça é colocada no interior de uma bobina ou solenóide. Pode ocorrer também que a bobina é gerado, por indução magnética, um campo longitudinal na peça.

Técnica do yoke

É a técnica de magnetização pela indução em campo magnético, gerado por um eletroimã, em forma de U invertido, que é apoiado na peça a ser examinado. Pelo eletroimã circula a corrente elétrica alternada ou contínua. É gerada na peça um campo magnético paralelo a linha imaginária que une as duas pernas do Yoke .
Os ioques produzem campo magnético longitudinal, podendo ser de pernas fixas ou os de pernas articuláveis, conhecidos como Ioques de pernas articuladas. Os de pernas articuláveis são mais eficientes por permitirem uma série de posições de trabalho com garantia de um bom acoplamento dos pólos magnéticos. A sua vantagem está em não aquecer os pontos de contato, já que a técnica usa corrente elétrica magnetizante que flui pelo enrolamento da bobina do Ioque, e não pela peça. A recomendação básica de algumas normas para calibração deste equipamento é que o campo magnético formado na região de interesse definida como área útil, esteja entre os valores de 17 a 65 A/cm. Para simplificar e permitir a comprovação periódica da intensidade do campo magnético durante os trabalhos de campo é estabelecido nas normas, que a verificação da força de magnetização do Ioque pode ser comprovada através de sua capacidade mínima de levantamento de massa equivalente a 4,5 kg de aço, no máximo espaçamento entre os pólos a ser utilizado em corrente alternada e de 18,1 kg em corrente elétrica contínua.


Desmagnetização

Verificamos que alguns materiais, devido as suas propriedades magnéticas, são capazes de reter parte do magnetismo após a interrupção da força magnetizante. Conforme a aplicação subsequente destes materiais, o magnetismo residual ou remanente poderá criar problemas, sendo necessário a desmagnetização da peça. Podemos resumir as razões para desmagnetização de uma peça como a seguir.
Interferência nos processos de Usinagem: Uma peça com magnetismo residual poderá interferir nos processos futuros de usinagem, pois o magnetismo da peça induzirá a magnetização das ferramentas de corte afetando o acabamento da peça. A retenção de limalhas e partículas contribuirá para a perda do fio de corte da ferramenta. Interferência nos processos de Soldagem: A interferência em operação de soldagem se faz sentir com a deflexão do arco elétrico, desviando-o da região de soldagem, interferência conhecida como sopro magnético, que prejudicará em muito o rendimento e a qualidade da solda. Interferência com Instrumentos de Medição: O mecanismo residual interfere com instrumentos sensíveis de medição ou navegação, colocando em risco a operação dos equipamentos uma vez que, as leituras obtidas não correspondem à realidade. Há registros de acidentes aéreos por interferências de campos magnéticos detrens de pouso nos instrumentos de navegação da aeronave. A desmagnetização é dispensável quando:
a) Os materiais possuem baixa retentividade;
b) As peças forem submetidas a tratamento térmico. As peças de aço que estiverem magnetizadas, ao atingir a temperatura de 750° C, chamado ponte Curie, perdem a magnetização;
c) As peças forem novamente magnetizadas.

Métodos de desmagnetização

São várias as técnicas de desmagnetização sendo que todas são baseadas no princípio de que, submetendo a peça a um campo magnético que é continuamente invertido e gradualmente reduzindo a zero, após um determinado período e um número de ciclos, a peça será desmagnetizada.

Ensaio Via seca

Dizemos que as partículas são para via seca, como o próprio nome indica, quando aplicadas a seco. Neste caso é comum dizer que o veículo que sustenta a partícula até a sua acomodação é o ar. Na aplicação por via seca usamos aplicadores de pó manuais ou bombas aspersoras que pulverizam as partículas na região do ensaio, na forma de jato de pó. As partículas para via seca devem ser guardadas em lugares secos e ventilados para não se aglomerarem. É muito importante que sejam de granulometria adequada para serem aplicadas uniformemente sobre a região a ser inspecionada. Comparando com o método por via úmida, as partículas por via seca são mais sensíveis na detecção de descontinuidades próximas a superfície, mas não são mais sensíveis para pequenas descontinuidades superficiais. Também, para uma mesma área ou região examinada, o consumo é maior. Por outro lado, é possível a reutilização das partículas , caso o local de trabalho permitir e que seja isenta de contaminação.

Ensaio Via úmida

É método de ensaio pela qual as partículas encontram-se em dispersão em um líquido, denominado de veículo. Este líquido pode ser a água, querosene ou óleo leve . No método por via úmida as partículas possuem granulometria muito fina, sendo possível detectar descontinuidades muito pequenas, como trincas de fadiga. Devemos ressaltar que neste método de ensaio, as partículas que estão em dispersão, mesmo na presença do campo magnético, tem maior mobilidade do que na via seca, e podem percorrer maiores distâncias enquanto se acomodam ou até serem aprisionadas por um campo de fuga. Da mesma forma, nas superfícies inclinadas ou verticais requerem menor esforço para remoção do excesso. Os aplicadores por via úmida são na forma de chuveiros de baixa pressão no caso de máquinas estacionárias ou manuais, tipo borrifadores, que produzem uma névoa sobre a região em exame. Contudo, nada impede que na aplicação manual, a suspensão seja derramada sobre a peça. A escolha do aplicador tipo borrifo tem finalidades econômicas e de execução do ensaio, visto que a quantidade aplicada é menor, e para o inspetor a visualização imediata das indicações, enquanto ocorre a acomodação das partículas e pouco excesso para remoção. Embora já exista no mercado suspensões em forma de spray, a aplicação mais usual é a que é preparada pelo próprio inspetor. O método por via úmida exige uma constante agitação da suspensão para garantir a homogeneidade das partículas na região de exame. Essa agitação é automática nas máquinas estacionárias. Na aplicação manual, o próprio inspetor deverá fazê-la, agitando o aplicador antes de cada etapa de aplicação.

• Preparação das Partículas Via Úmida: As partículas para serem aplicadas pelo método por via seca não requerem preparação e são retiradas diretamente das embalagens para os aplicadores de pó. Já as partículas para via úmida requerem a preparação da suspensão ou banho. Estas partículas podem estar na forma de pó ou pasta. A preparação da suspensão por via úmida é muito importante para garantia da homogeneização do banho e dispersão das partículas na região em ensaio, após aplicação. Os fabricantes indicam nas próprias embalagens os valores de concentração adequada para a suspensão. Algumas partículas são utilizadas tanto em querosene quanto em água, fazendo com que o banho tenha uma composição homogênea, evitar a formação de espuma e a oxidação da superfície da peça logo após o ensaio. Deve-se salientar que no preparo da suspensão, a partícula, que é um pó muito fino, tem dificuldade de se misturar no líquido caso seja adicionada a este de uma única vez. Na prática, o que faz é o inverso: o veículo da suspensão é adicionado aos poucos a um copo contendo o pó e no início em pouquíssima quantidade, com objetivo de permitir que seja bem misturadas todas as partículas. Só depois que o inspetor conseguir “quebrar” bem a aglomeração das partículas, formando um “mingau”, é que se adiciona aos poucos o restante do veículo até completar um litro, sem deixar de mexer ou agitar toda suspensão. A verificação da concentração é realizada usando-se um tubo decantador padronizado graduado, que tem a forma de pera. Com ele, são retirados da suspensão pronta 100 ml, e aguarda-se 30 minutos. Após esse tempo, verifica-se na base do tubo, a quantidade também em ml de partículas decantadas, que se estiverem dentro da faixa recomendada pelas normas, indicam que a suspensão está pronta para uso. Os valores recomendados são de 1,2 a 2,4 ml/50 ml para a inspeção por via úmida de partículas observadas sob luz branca ou natural, e de 0,1 a 0,7 ml/50 ml para as partículas fluorescentes, que são observadas sob luz ultravioleta ( ou luz negra ).

Nenhum comentário:

Postar um comentário