segunda-feira, 4 de julho de 2016

Soldagem: variáveis elétricas

Ensaio por partículas magnéticas - parte 3


Escolha dos tipos de partículas

A escolha da cor das partículas fica associada ou definida em função da cor de fundo, cor da superfície da peça em exame. E procuramos usar uma partícula cuja cor produza com a superfície o melhor contraste possível, garantido  dessa forma maior sensibilidade visual. A cor da partícula é uma pigmentação que tem também a finalidade de promover um balanceamento das condições de densidade da mesma. No caso das partículas para aplicação pelo método de via úmida é importante que a pigmentação ou recobrimento da partícula acumulada nas indicações sem cor que produza contraste suficiente com a superfície em exame.
No mercado podemos encontrar partículas a serem aplicadas por via seca nas cores: branca, cinza, amarela, vermelha e preta, conhecidas como partículas para observação sob luz negra ou ultravioleta. Também sob as mesmas condições de luz, as partículas por via úmida nas cores, preto, vermelho e fluorescente. As fluorescentes podem, de acordo com o fabricante, apresentaram-se nas cores amarelo esverdeado ou alaranjado. Com a finalidade de promover melhor visualização das partículas, foram desenvolvidos mais recentemente os líquidos de contraste, que é uma tinta branca em embalagem spray que é aplicada de forma uniforme sobre a superfície de teste, garantindo um fundo uniforme que vai contrastar com a cor da partícula, aumentando-se a sensibilidade da visualização. A tinta de contraste é aplicada de maneira a criar um fundo branco sem no entanto interferir na mobilidade das partículas ou mesmo na intensidade dos campos de fuga. A espessura do filme de tinta após seco é da ordem de 15 µm .

Procedimento para ensaio

Sequência Básica para Aplicação do Ensaio:
• Preparação da Superfície: De acordo com a sequência de execução do ensaio, o ensaio por Partículas Magnéticas, começa pela limpeza e/ou preparação da superfície. O método de preparação da superfície depende do tipo de peça, tamanho e quantidade. São métodos de limpeza:
• Jato de areia ou granalha,
• Escova de aço,
• Solvente e panos umedecidos em solventes ou secos;
• Limpeza química ;
• Vapor desengraxante;
• Esmerilhamento.
O objetivo desses métodos de limpeza é de retirar da superfície em exame toda a sujeira, oxidação, carepas, respingos ou inclusões superficiais que prejudiquem o ensaio com a formação de campos de fuga falsos, ou que, contaminem a suspensão, caso o ensaio seja executado com via úmida , ou ainda que dificultem a mobilidade das partículas sôbre a superfície. O jato de areia ou granalha é comumente utilizados na preparação de peças automotivas ou componentes de máquinas, que, são colocados em cabines para jateamento ou por tamboreamento. Escovas de aço que tanto podem ser rotativas, ou manuais são mais utilizadas na preparação de peças soldadas. O solvente é empregado como uma complementação aos métodos de limpeza anteriores, com o objetivo de promover na região a ser inspecionada uma superfície isenta de graxas, óleo ou outro tipo de contaminante que impeça ou prejudique o ensaio, mascarando os resultados. É necessário garantir uma boa mobilidade das partículas. Caso as partículas sejam aplicadas dispersas em água, a superfície deve estar isenta de óleo ou graxa, caso contrário a peça não ficará “molhada”
• Seleção do Equipamento para Magnetização e das Partículas Magnéticas:
Como vimos, a escolha do equipamento para magnetização e do tipo de partículas magnéticas, dependerá da forma da peça a ser ensaiada, do local para execução do ensaio, do acabamento superficial da peça, e da especificação técnica para inspeção. O ensaio por partículas magnéticas deve ser sempre executado com base a um procedimento qualificado e aprovado, com finalidade de estabelecer e fixar as variáveis essenciais do ensaio. Assim, a técnica de magnetização, o método de ensaio, e outros, não necessitam serem determinadas pelo inspetor responsável, no momento do ensaio. A recomendação básica de todo sistema de garantia da qualidade, é que todos os instrumentos de ensaio precisam estar calibrados. Para os equipamentos que incorporam miliamperímetros, estes devem estar calibrados ; por outro lado os Yokes devem ser calibrados com o teste de elevação de carga.

• Planejamento do Ensaio e Magnetização da Peça:
Escolhida a técnica de magnetização a ser empregada ou disponível para o ensaio, é importante que o Inspetor procure visualizar ou esquematizar a peça, como será o campo magnético formado, se longitudinal ou circular. Essa visualização é importante pois como não conhecemos a orientação das descontinuidades vamos começar a fazer o ensaio por um ponto e, para garantirmos que a inspeção foi adequada, capaz de detectar qualquer descontinuidade em qualquer orientação, é preciso que, de acordo com a técnica de magnetização utilizada, uma outra varredura, defasada de mais ou menos 90° do eixo da anterior, seja realizada na mesma região. A técnica de varredura descrita anteriormente é empregada na inspeção de peças utilizando-se de um Ioque ou através da técnica de eletrodos, onde recomenda-se, para garantir uma varredura perfeita e com sobreposição adequada entre uma e outra varredura, que o inspetor trace com giz de cera na peça os pontos onde serão apoiadas as pernas do Ioque ou eletrodos, obtendo-se assim, uma varredura sequencial e com garantia de inspeção em 100% da região de interesse, a posição dos polos de contato 1-1 e 4-4 ou 2-2 e 3-3. Já nas máquinas estacionárias, onde as peças a serem inspecionadas, como por exemplo: pinos, bielas, engrenagens, disco, virabrequins, são submetidas, na maioria das vezes, a dois campos magnéticos aplicados simultaneamente, sendo um por corrente alternada - CA e outro, por corrente alternada retificada, ou ambos por correntes alternadas defasadas, é necessário garantir a varredura de toda a peça ou de uma região de interesse. Nesse caso, é importante verificar se a intensidade do campo é adequada para se fazer a inspeção de toda a peça de uma vez só. Caso isso não seja possível, é necessário inspecionar peça em partes, ou seções. Portanto, de acordo com o equipamento disponível, em função de seus recursos e capacidade, fazemos os ajustes nos campos de modo a obter um balanceamento ótimo. Notar descontinuidade que podemos e devemos trabalhar ora com um campo ora com outro para perfeita detecção e descontinuidade transversais ou longitudinais. A varredura insuficiente ou inadequada torna o ensaio sem confiabilidade.


• Aplicação das Partículas e Observação das Indicações: A aplicação das partículas ferromagnéticas deve ser feita de forma que seja coberta toda a área de interesse, quer seja por via seca ou úmida. A remoção do excesso de partículas sobre a superfície deve ser feita de modo a não eliminar as indicações que se formam. Se as partículas forem por via seca, um leve sopro deve ser aplicado. Se as partículas forem via úmida, o próprio veículo promove o arrasto do excesso das partículas. A observação das indicações se dará pela visualização dos pontos de acúmulo do pó ferromagnético. Esta fase não é tão fácil, pois o inspetor pode confundir um acúmulo de pó devido a uma ranhura ou mordedura , com uma descontinuidade, levando a erros no julgamento dos resultados.
• Avaliação e Registro dos Resultados: Como um ensaio por partículas magnéticas é um tanto quanto subjetivo, torna-se necessário que, mesmo seguidos os critério e requisitos recomendados para o ensaio com base nas normas aplicáveis, os resultados obtidos no ensaio na mesma peça sob as mesmas condições. Para tal, além de ser seguido um procedimento específico para cada tipo de trabalho que se fez, torna-se necessário implementar uma correlação entre o mapa de registro dos resultados e os relatórios emitidos, bem como a localização física da peça ou equipamento submetido ao ensaio. Como orientação, sugerimos que seja elaborado um relatório detalhando todas as características e parâmetros do ensaio, tais como:
• Peça ensaiada ,desenho, posição , etc.. ;
• Área de interesse ;
• Norma de aceitação;
• Aparelho de magnetização;
• Tipo e intensidade da corrente elétrica utilizada ;
• Tipo de pó magnético usado;
• Veículo, se aplicável
• Concentração das partículas , se aplicável;
• Croquis da peça e das indicações observadas;
• Assinatura e identificação do inspetor responsável.
Uma das formas adequadas de registro das descontinuidades no caso de soldas, é a de desenhá-las em fita crepe ou, se dispuser de maiores recursos utilizar-se de fotografias. Conforme já mencionado, desde que todos os requisitos do ensaio, forem cumpridos, torna-se fácil avaliação das indicações. O inspetor deverá, naturalmente, estar familiarizado com os requisitos ou critérios de aceitação recomendados pela norma aplicável. A observação e avaliação das indicações é processada imediatamente após a aplicação da suspensão ou do pó e durante a remoção do excesso, uma vez que o comportamento da mobilidade das partículas, distribuição, contraste, etc., indicará a necessidade ou não de reinspeção da área. Notar que muitas vezes poderão surgir indicações falsas ou não relevantes, sendo recomendado ao inspetor muito cuidado na perfeita avaliação dos resultados obtidos. As condições de iluminação são essenciais para êxito desta etapa.

Critério de aceitação das indicações

O critério de aceitação que segue abaixo , é uma tradução do Código ASME Sec. VIII Div.1 Apêndice 7 , é aplicável para soldas inspecionadas por partículas magnéticas Avaliação das indicações:
Uma indicação é uma evidência de uma imperfeição mecânica.
 Somente indicações com dimensões maiores que 1/16 pol. ( 1,5 mm) deve ser considerada como relevante.
(a) Uma indicação linear é aquela tendo um comprimento maior que três vezes a largura.
(b) Uma indicação arredondada é aquela na forma circular ou elíptica com comprimento igual ou menor que três vezes a largura.
(c) Qualquer indicação questionável ou duvidosa , deve ser reinspecionada para determinar se indicações relevantes estão ou não presentes.
Critério de Aceitação: Toda as superfícies devem estar livres de :
(a) indicações relevantes lineares ;
(b) indicações relevantes arredondadas maiores que 3/16 pol. (5,0 mm) ;
(c) quatro ou mais indicações relevantes arredondadas em linha separadas por 1/16 pol. (1,5 mm) ou menos (de borda a borda) ;
(d) uma indicação de uma imperfeição pode ser maior que a imperfeição , entretanto , o tamanho da indicação é a base para a avaliação da aceitação .




OBRAS CONSULTADAS
1. American Society of Mechanical Engineers - ASME Boiler and Pressure Vessel Code , Section V ,
2. Leite, Paulo G.P , “Curso de Ensaios Não Destrutivos” , 8a. edição , Associação Brasileira de Metais-ABM, 1966 ;
3. Krautkramer , “Ultrasonic Testing of Materials” second edition ;
4. Andreucci,Ricardo “Ensaio Não Destrutivo - Ultrassom” , Associação Brasileira de Ensaios Não Destrutivos- ABENDI 5. Eastman Kodak Company , “Radiography in Modern Industry” , 4a Edition , 1980 6. Agfa Gevaert , “Radiografia Industrial”, NV 1989 7. American Society of Mechanical Engineers - ASME Boiler and Pressure Vessel Code , Section VIII Div.1

sexta-feira, 1 de julho de 2016

Ensaio por Partículas Magnéticas Parte 2

Técnicas de magnetização

Mencionamos que podemos obter campos magnéticos por diversas técnicas, contudo, o processo de magnetização só é obtido através de indução de campo magnético ou por indução de corrente elétrica. Dizemos que há indução de campo quando o campo magnético gerado na peça é induzido externamente. Já no processo de magnetização por passagem de corrente, a peça em inspeção faz parte do circuito elétrico do equipamento de magnetização, isto é, a corrente de magnetização, circula pela própria peça. É por esta razão que recomendase bastante cuidado na utilização da técnica de magnetização por passagem de corrente, pois poderá ocorrer a abertura de um arco elétrico nos pontos de entrada e saída de corrente, queimando a peça nesta região,o que, em se tratando de peça acabada, pode ser inaceitável, ou mesmo poderá representar risco de explosão ou incêndio se no ambiente houver gases ou vapores inflamáveis.

Tipos de corrente elétrica utilizada

As correntes elétricas utilizadas na magnetização para inspeção por partículas magnéticas poderão ser das mais variadas fontes existentes, como segue:
• corrente contínua (CC): somente obtida através de baterias, e que na prática não é aplicável em processos industriais ;
• corrente alternada (AC): usada para detecção de descontinuidades superficiais. A corrente alternada , devido ao ciclo alternado da corrente, promove maior mobilidade às partículas, tem pouca penetração, as linhas de força são mais concentradas na superfície e portanto é mais recomendada para a detecção de descontinuidades superficiais;
• corrente alternada retificada (meia onda ou onda completa) (CA): usada para detecção de descontinuidades sub-superficiais , o que na prática representa até 4 mm de profundidade.

Magnetização por passagem de corrente pela peça

É a técnica de magnetização, em que a corrente circula pela peça, onde temos as técnicas de eletrodos e de contato direto. Técnica dos Eletrodos É a técnica de magnetização pela utilização de eletrodos, também conhecidas como pontas que quando apoiadas na superfície da peça, permitem a passagem de corrente eletríca pela peça. O campo magnético criado é circular. Esta técnica é geralmente aplicada em peças brutas fundidas, em soldas, nas indústrias de siderurgia, calderaria e outros.
A técnica dos eletrodos induz um campo magnético que é dependente da distância entre os eletrodos e a corrente elétrica que circula por eles. Em geral estes valores são tabelados e disponíveis nas normas técnicas de inspeção aplicáveis ao produto ensaiado.
Aparelho típico para magnetização por passagem de corrente elétrica denominada técnica de eletrodos. Estes equipamentos são portáteis, permitindo atingir até 1500 Ampéres utilizando corrente contínua ou alternada. Cuidados devem ser tomados quanto ao meio ambiente de operação destes equipamentos pois estes produzem faíscas elétricas que podem causar explosões na presença de gases ou produtos inflamáveis.

Técnica de contato direto

Também conhecida como magnetização por placas ou cabeçotes de contato. Devido sua aplicação maior ser através de máquinas estacionárias é definida como sendo a técnica de magnetização pela passagem de corrente elétrica de extremidade a extremidade da peça. O campo magnético formado é circular. Esta técnica se difere da técnica por eletrodos descrita ,pois é aplicável em sistemas de inspeção automáticos ou semi-automáticos, para inspecionar barras, eixos, principalmente nas indústrias automobilísticas ou em fabricas de produtor seriados de pequeno porte.

Técnica da bobina

Nessa técnica a peça é colocada no interior de uma bobina ou solenóide. Pode ocorrer também que a bobina é gerado, por indução magnética, um campo longitudinal na peça.

Técnica do yoke

É a técnica de magnetização pela indução em campo magnético, gerado por um eletroimã, em forma de U invertido, que é apoiado na peça a ser examinado. Pelo eletroimã circula a corrente elétrica alternada ou contínua. É gerada na peça um campo magnético paralelo a linha imaginária que une as duas pernas do Yoke .
Os ioques produzem campo magnético longitudinal, podendo ser de pernas fixas ou os de pernas articuláveis, conhecidos como Ioques de pernas articuladas. Os de pernas articuláveis são mais eficientes por permitirem uma série de posições de trabalho com garantia de um bom acoplamento dos pólos magnéticos. A sua vantagem está em não aquecer os pontos de contato, já que a técnica usa corrente elétrica magnetizante que flui pelo enrolamento da bobina do Ioque, e não pela peça. A recomendação básica de algumas normas para calibração deste equipamento é que o campo magnético formado na região de interesse definida como área útil, esteja entre os valores de 17 a 65 A/cm. Para simplificar e permitir a comprovação periódica da intensidade do campo magnético durante os trabalhos de campo é estabelecido nas normas, que a verificação da força de magnetização do Ioque pode ser comprovada através de sua capacidade mínima de levantamento de massa equivalente a 4,5 kg de aço, no máximo espaçamento entre os pólos a ser utilizado em corrente alternada e de 18,1 kg em corrente elétrica contínua.


Desmagnetização

Verificamos que alguns materiais, devido as suas propriedades magnéticas, são capazes de reter parte do magnetismo após a interrupção da força magnetizante. Conforme a aplicação subsequente destes materiais, o magnetismo residual ou remanente poderá criar problemas, sendo necessário a desmagnetização da peça. Podemos resumir as razões para desmagnetização de uma peça como a seguir.
Interferência nos processos de Usinagem: Uma peça com magnetismo residual poderá interferir nos processos futuros de usinagem, pois o magnetismo da peça induzirá a magnetização das ferramentas de corte afetando o acabamento da peça. A retenção de limalhas e partículas contribuirá para a perda do fio de corte da ferramenta. Interferência nos processos de Soldagem: A interferência em operação de soldagem se faz sentir com a deflexão do arco elétrico, desviando-o da região de soldagem, interferência conhecida como sopro magnético, que prejudicará em muito o rendimento e a qualidade da solda. Interferência com Instrumentos de Medição: O mecanismo residual interfere com instrumentos sensíveis de medição ou navegação, colocando em risco a operação dos equipamentos uma vez que, as leituras obtidas não correspondem à realidade. Há registros de acidentes aéreos por interferências de campos magnéticos detrens de pouso nos instrumentos de navegação da aeronave. A desmagnetização é dispensável quando:
a) Os materiais possuem baixa retentividade;
b) As peças forem submetidas a tratamento térmico. As peças de aço que estiverem magnetizadas, ao atingir a temperatura de 750° C, chamado ponte Curie, perdem a magnetização;
c) As peças forem novamente magnetizadas.

Métodos de desmagnetização

São várias as técnicas de desmagnetização sendo que todas são baseadas no princípio de que, submetendo a peça a um campo magnético que é continuamente invertido e gradualmente reduzindo a zero, após um determinado período e um número de ciclos, a peça será desmagnetizada.

Ensaio Via seca

Dizemos que as partículas são para via seca, como o próprio nome indica, quando aplicadas a seco. Neste caso é comum dizer que o veículo que sustenta a partícula até a sua acomodação é o ar. Na aplicação por via seca usamos aplicadores de pó manuais ou bombas aspersoras que pulverizam as partículas na região do ensaio, na forma de jato de pó. As partículas para via seca devem ser guardadas em lugares secos e ventilados para não se aglomerarem. É muito importante que sejam de granulometria adequada para serem aplicadas uniformemente sobre a região a ser inspecionada. Comparando com o método por via úmida, as partículas por via seca são mais sensíveis na detecção de descontinuidades próximas a superfície, mas não são mais sensíveis para pequenas descontinuidades superficiais. Também, para uma mesma área ou região examinada, o consumo é maior. Por outro lado, é possível a reutilização das partículas , caso o local de trabalho permitir e que seja isenta de contaminação.

Ensaio Via úmida

É método de ensaio pela qual as partículas encontram-se em dispersão em um líquido, denominado de veículo. Este líquido pode ser a água, querosene ou óleo leve . No método por via úmida as partículas possuem granulometria muito fina, sendo possível detectar descontinuidades muito pequenas, como trincas de fadiga. Devemos ressaltar que neste método de ensaio, as partículas que estão em dispersão, mesmo na presença do campo magnético, tem maior mobilidade do que na via seca, e podem percorrer maiores distâncias enquanto se acomodam ou até serem aprisionadas por um campo de fuga. Da mesma forma, nas superfícies inclinadas ou verticais requerem menor esforço para remoção do excesso. Os aplicadores por via úmida são na forma de chuveiros de baixa pressão no caso de máquinas estacionárias ou manuais, tipo borrifadores, que produzem uma névoa sobre a região em exame. Contudo, nada impede que na aplicação manual, a suspensão seja derramada sobre a peça. A escolha do aplicador tipo borrifo tem finalidades econômicas e de execução do ensaio, visto que a quantidade aplicada é menor, e para o inspetor a visualização imediata das indicações, enquanto ocorre a acomodação das partículas e pouco excesso para remoção. Embora já exista no mercado suspensões em forma de spray, a aplicação mais usual é a que é preparada pelo próprio inspetor. O método por via úmida exige uma constante agitação da suspensão para garantir a homogeneidade das partículas na região de exame. Essa agitação é automática nas máquinas estacionárias. Na aplicação manual, o próprio inspetor deverá fazê-la, agitando o aplicador antes de cada etapa de aplicação.

• Preparação das Partículas Via Úmida: As partículas para serem aplicadas pelo método por via seca não requerem preparação e são retiradas diretamente das embalagens para os aplicadores de pó. Já as partículas para via úmida requerem a preparação da suspensão ou banho. Estas partículas podem estar na forma de pó ou pasta. A preparação da suspensão por via úmida é muito importante para garantia da homogeneização do banho e dispersão das partículas na região em ensaio, após aplicação. Os fabricantes indicam nas próprias embalagens os valores de concentração adequada para a suspensão. Algumas partículas são utilizadas tanto em querosene quanto em água, fazendo com que o banho tenha uma composição homogênea, evitar a formação de espuma e a oxidação da superfície da peça logo após o ensaio. Deve-se salientar que no preparo da suspensão, a partícula, que é um pó muito fino, tem dificuldade de se misturar no líquido caso seja adicionada a este de uma única vez. Na prática, o que faz é o inverso: o veículo da suspensão é adicionado aos poucos a um copo contendo o pó e no início em pouquíssima quantidade, com objetivo de permitir que seja bem misturadas todas as partículas. Só depois que o inspetor conseguir “quebrar” bem a aglomeração das partículas, formando um “mingau”, é que se adiciona aos poucos o restante do veículo até completar um litro, sem deixar de mexer ou agitar toda suspensão. A verificação da concentração é realizada usando-se um tubo decantador padronizado graduado, que tem a forma de pera. Com ele, são retirados da suspensão pronta 100 ml, e aguarda-se 30 minutos. Após esse tempo, verifica-se na base do tubo, a quantidade também em ml de partículas decantadas, que se estiverem dentro da faixa recomendada pelas normas, indicam que a suspensão está pronta para uso. Os valores recomendados são de 1,2 a 2,4 ml/50 ml para a inspeção por via úmida de partículas observadas sob luz branca ou natural, e de 0,1 a 0,7 ml/50 ml para as partículas fluorescentes, que são observadas sob luz ultravioleta ( ou luz negra ).